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Abstract 

We study the polynomial-time semi-rankable sets (P-sr), the ranking analog of the 
P-selective sets. We prove that P-sr is a strict subset of the P-selective sets, and indeed 
that the two classes differ with respect to closure under complementation, closure under 
union with P sets, and closure under join with P sets. We also show that though P-sr 
falls between the P-rankable and the weakly-P-rankable sets in its inclusiveness, it equals 
neither of these classes. 
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1    Introduction 

In the late 1970s, Selman [Sel79] denned the semi-feasible (i.e., P-selective) sets, which are 

the polynomial-time analog of the Jockush's [Joc68] semi-recursive sets. Recently, there has been 

an intense renewal of interest in the P-selective sets and variants of the P-selective sets (see the 

survey [DHHT94]). Among the variants of the P-selective sets that have recently been studied are 
the membership comparable sets defined by Ogihara [Ogi94b], the nondeterministically selective 

sets [HNOSb,HHO+93], and the probabilistically selective sets defined by Wang [Wan]. 

However, all the variants that have been studied have been generalizations of the P-selective 

sets. This is somewhat curious as—given that the key problem with the P-selective sets is they can 

be quite complex—it might seem most natural to refine the P-selective sets and see whether the 

refinement retains the complexity of the P-selective sets. In this paper we do that. In particular, 

we look at the "polynomial-time semi-rankable sets" (P-sr), a class that is the ranking analog of the 

P-selective sets and is a refinement of the P-selective sets. Informally, a set A is polynomial-time 

semi-rankable if there is a polynomial-time two-argument function / that, whenever at least one of its 

inputs, say x, is in A, outputs that input and its rank within A, i.e., \\{z \z £ A and z <iexicographicai 

x}\\. That is, just as a P-selective set is one that (under a certain promise condition) has certain 

available information regarding membership in the set, a P-sr set is one that (under the same promise 

condition) has certain available information regarding rank in the set. 

It follows easily from the definitions that P-sr is a superset of the polynomial-time rankable 

sets of Goldberg and Sipser [GS91], and is a subset of the polynomial-time weakly rankable sets 

of Hemaspaandra and Rudich [HR90]. We prove that both these inclusions are strict. It follows 

immediately that all sets in P are polynomial-time semi-rankable if and only if P = P#p. Further, 

we prove that P-sr is a proper refinement of the P-selective sets. Nonetheless, we also prove that 

the polynomial-time semi-rankable sets remain extremely complex. 

Though not closed under union or join [HJ], the P-selective sets are clearly closed under union 

(equivalently, intersection) with P sets, under join with P sets, and under complementation. In 
contrast, we show that P-sr is not closed under union with P sets, under join with P sets, or under 

complementation. We also prove that P-sr is closed under intersection with P sets if and only 

if P = P#p. Thus, P-sr and the P-selective sets not only differ, but even differ on very minimal 

natural closure properties. On the other hand, though they are a subset of the P-selective sets, 

we argue that P-sr seem just as hard in terms of the extended lowness hierarchy as the P-selective 

sets: both these classes are in the EL2 level of the extended low hierarchy and there are oracles 

relative to which they are not in EL2. We also observe that the nearly near-testable sets [HH91] 

also lack closure under intersection (equivalently union) with P sets unless P = P#p (equivalently, 

P = NP = PH = P#p = PPPH). 



2    Definitions 

We let our alphabet, E, be {0,1}. For any set A and any string x, A^x denotes those strings in 

A that come before x in the standard lexicographical order. For any set A and any integer n, A=n 

denotes the strings in A of length exactly n, and A-n denotes the strings in A of length no greater 

than n. Let N*1 denote {1, 2, 3, • • •}. Let TALLY = {A | A C 0*}. 
We state three definitions from the literature. Informally, P-selectivity captures the notion of sets 

for which there is a polynomial-time algorithm telling which of any two given elements is "logically 

no less likely to be in the set." The Goldberg-Sipser notion of polynomial-time rankability captures 

those sets that are sufficiently simple that there is a polynomial-time algorithm that can determine 

(for elements in the set) the number of elements in the set up to that point. There have been many 

papers studying the issue of which sets can be ranked [GS91,HR90,BGS91,Huy90]. 

Definition 2.1 

1. [GS91] For any set B and any string x, define rankB{x) — ||5-x||. A set A is P-rankable 

if there is a polynomial-time computable function / such that (a) (Va; G A) [f(x) = rankA{x)] 

and (b) (Va; ^ A) [f(x) = "not in A"]. We also use P-rankable to denote the class of sets that 

are P-rankable. 

2. [HR90] A set A is weakly-P-rankable if there is a polynomial-time computable function / 

such that (Va; G A) [f(x) — rankA(x)]. We also use weakly-P-rankable to denote the class of 

sets that are weakly-P-rankable. 

Note that for x 0 A, the definition of weakly-P-rankable sets puts no constraint on the behavior of 

/ on x other than that it must run in polynomial time. 

Definition 2.2 [Sel79,Sel82] A set A is P-selective if there is a (total, single-valued) polynomial- 

time computable function / such that, for every x and y, it holds that 

1- /(z, y) = x oi f(x, y) = y, and 

2. {a;, y} f] A ^ 0 => [(a; G A and f(x, y) = x) or (y G A and f{x, y) = y)}. 

We also use P-selective to denote the class of sets that are P-selective. 

The above definition is more verbose than needed, so as to bring out the analogy with the P-sr 

sets. 

We define the following refinement of P-selectivity. This refinement requires the production not 

just of a member of the set (under a certain hypothesis), but also (under the same hypothesis) the 

accompanying rank information giving the location within the set of the member. 

Definition 2.3 A set A is polynomial-time semi-rankable if there is a (total, single-valued) function 

/ such that, for every x and y, 

1. (3n) [f(x, y) = (x, n) or f(x, y) = (y, n>], and 



2. {x,y}f)A  £   0    =>    [{x   G   A and f(x,y)   =   <«, rankA{x))) or (j/   £   Awdf(x,y)   = 

{y,rankA{y)})]. 

In such a case, we say that / is a serai-ranking function for A. We use P-sr to denote the class of 

sets that are polynomial-time semi-rankable. 

The following result is immediate. 

Proposition 2.4 P-sr = P-selective D weakly-P-rankable. 

Though we adopt Definition 2.3 throughout this paper, we note that the definition is relatively 

robust. For example, if one deletes the definition's condition 1 the class of languages defined remains 

unchanged, and if one deletes condition 1 and changes the hypothesis of condition 2 to "{x, y] fj A ^ 

0 and x ^ y" the class of languages defined also remains unchanged. 
It follows immediately from the definitions that P-rankable C P-sr C weakly-P-rankable and 

P-sr C P-selective. From this and the result that all P sets are P-rankable if and only if all P sets 

are weakly-P-rankable if and only if P = P#p ([HR90], see also [GS91]), we have the following. 

Proposition 2.5 All P sets are polynomial-time semi-rankable if and only if P = P#p. 

Ko proved that all P-selective sets have small circuits (i.e., P-selective C P/poly). It is not hard 
to see that all P-sr sets have small ranking circuits (i.e., P-sr C P/poly-rankable, where the P/poly 

is in fact representing the function class FP/poly in the same way the P in P-selective represents 

the function class FP). 
Note that if /' is a semi-ranking function for A, then f(x,y) =de} f'(min(x,y), max(x,y}) is 

a semi-ranking function for A having the property that for every x and y, f(x,y) = f(y,x). We 

assume that all semi-ranking functions discussed henceforward are already in this "oblivious to the 

ordering of their arguments" form. 
We review the definitions of the low and extended low hierarchies to which we will refer in the 

last part of the paper. Following Ko and Scheming [KS85], for all k > 0 we define Lfc to be the class 
of sets L in NP such that ££'L = ££, and Lfc is the class of sets L such that Ap

k
,L = Ap

k. Thus the 
sets in the low hierarchy are those sets in NP that provide no additional power to some level of the 

polynomial hierarchy, when given as an oracle. To help classify sets that are not in NP, the extended 

low hierarchy was defined by Balcazar, Book, and Schöning [BBS86] as follows: For all k > 1, ELfc 

is the class of sets L such that ££'L C E&f1
eSAT

> where A @ B = {Ox | x G A} U {lx\ x € B}. 

Similarly, one can define intermediate levels, as suggested by Schöning in [Sch86]. Let ELk denote 

the class of sets such that Ap
k
,L C A£,f1

eSAT. The relativized versions with respect to oracle A of 

ELfe and ELfc are obtained by replacing SAT by some standard complete set for NP   . 

3    Separations 

The polynomial-time semi-rankable sets are a proper refinement of the P-selective sets, as shown 

by the following result. 



Theorem 3.1 P-sr / P-selective. 

Proof: Note that P-sr C P-selective, since we can obtain a P-selector function from a P-sr function 

by simply ignoring the rank information. We will show that there exists a set that is P-selective 

but not P-sr. Define /z(l) = 2, and /i(i + 1) = 22" ' for each i > 1. Let {fi}i€N>i be a standard 

enumeration of all polynomial-time 2-ary transducers, and let this enumeration have the property 

that each transducer is repeated infinitely often. Let sA = {sx\x £ A}, and let the join (sometimes 

referred to in the literature as disjoint union or marked union) operator be defined by A@B = (L4U 

IB. We will construct, in stages, asetA = (J1>0Aj, and we will argue that A©1* £ P-selective—P-sr. 

We will construct A so that it satisfies the following conditions: 

1. A £ E, where E = (Jc>o DTIME[2en], and 

2. ACH, where H = {0"W, 0"^, 0"^,...}. 

STAGE 0:    Let A0 = i 
STAGE i, i £ N^1: Run /.-(l^+i, p«+i) for at most 2\/("(')+i) steps. (The root is to ensure 

that the small overhead of simulating a machine causes us no problems.) If it has not finished 
within this time, then set A,- = Ai-\ and go to the next stage. If it finishes running within this 

time, then let {w,n) denote its output. If w ■£ l'l(*)+1
) then /,• is not a P-sr function for A,-_i © 1*, 

since clearly l^W+i g Ai-x © 1*; set A,- = Ai-i and go to the next stage. If w = l»(i)+1
J then let 

q — rankAi_1^i'(w). Notice that there are exactly ai = fi(i) strings in (A,-_i © 1*) D IS* that are 

lexicographically smaller than w, and by brute force we can compute 02 = ||A,-_i-''^_1^||, which 

is the number of strings in (Ai-\ @ V) D OS* that are lexicographically smaller than w. Thus, 

q = a\ + ai + 1 is computable in time polynomial in |u;|. Now, if n ^ q, then clearly /,• is not 

a P-sr function for A,_i © 1*- Let Ai = A,-_i and go to the next stage. Otherwise, n = q. Let 

A{ = Ai-i U {O^')}. By our construction, the rank of w will now be q + 1, which makes the output 
of fi wrong; go to the next stage. 

Note that the time cutoff for fi in stage i ensures that A £ E, and since each transducer is 

repeated infinitely often in the enumeration, running out of time is not a problem, as for all but a 

finite number of occurrences of each transducer we will not run out of time. By our construction 

above, A © 1* ^ P-sr, since each potential P-sr transducer is eventually eliminated (and the 
diagonalizations against Ai © 1* hold against A © 1* by construction). 

However, A © 1* £ P-selective via the following P-selector function: 

h(x,y) - < 

X iix,y$.H@r 

X if a: € 11* 

y if argil* andy£ll 

X if x = y £ OH 

min{x, y)    if x, y £ OH, x ^ y, min(x, y) £ OA 

max(x,y)    if x, y £ OH, x ^ y, min(x,y) g OA 



Note that since, if x £ y and x,y G OH, max(\x\,\y\) > 22""n(|x|,l!'l>) we can in this case 

decide by brute force whether min(x,y) G OA. Thus, h(x,y) is computable in time polynomial 

in maz(|a;|,|y|). ■ 
Though Theorem 3.1 shows that P-sr differs from the class of P-selective sets, one can well ask 

if they differ in natural ways. Later, we will show that they differ even with respect to some quite 

minimal closure properties. 
The fact (Theorem 3.1) that the polynomial-time semi-rankable sets properly refine the P- 

selective sets notwithstanding, P-sr contains quite complex sets. 

Theorem 3.2 Let / be any (total) recursive function. Then P-sr g DTIME[C(/(n))]. 

Proof: We will show that there exists a set B, such that B G P-sr, but B £ DTIME[0(/(n))]. It 

is well-known that for any given recursive function /, it holds that 

(3g) (VA = 0(f)) (3n0 G N*1): 

1. g is strictly monotonically increasing, 

2. g is a (total) recursive function, and 

3. (Vn>n0)[A(n)<flf(n)]. 

In particular, let M be a machine computing recursive function /.    We may define g(0)   = 
2ma.(l,runtime„(0)) and] inductively, for i > 0, g{i + 1) = 2(,'+1)ma^(0),-,s(0,runtimeM(i+l)).   Note 

that this g has the property that {i#V | g(i) < j} G P. Define /i(l) = 2 and, for i > 1, define 

inductively p(i + 1) = g{fi{i)). Let H = {O"^), 0"(2), O^^3),...}. Note that H £ P. Our construction 

will ensure that B C H. 
Let a(s) = \\{z\z G B and z Kuxicographicai s}\\, i.e., a(s) is the number of elements of B that 

are lexicographically strictly less than s. 
Let {Mi}ieN>i be a standard enumeration of all deterministic Turing machines. As before, we 

desire every machine to appear infinitely often in our enumeration; so define a new enumeration 

{M,}j€7v>i by M(jik) = Mj, where (•, •) is any easily computable and easily invertible bijection 

between iV^1 x JV^1 and N^1. We construct B = \Ji>oB>' in stages. sucn ttat (VA(n) = 

0{f(n)))[B <tmiME[h(n)]]. 

STAGE 0:    Let B0 = 0. 
STAGE i, i € N-1: Run Mi on input x = 0^'). If M,- accepts it within g(\x\) steps, then let 

Bi = 5,-1, else let B{ = 5,_i U {0"('')}. 

B €E P-sr, via the semi-ranking function: 

t(x,y) 

x,1) or (y, 1) 
x,l + a(x)) 

V, l + a(y)) 
x,l + a(x)) 

min(x,y), 1 + a(min(x, y))) 

if{x,y}nH = HS 

if xeH,y<£H 

if y€H,x<£H 

if x = y G H 

if x, y E H, x ^ y, min(x, y) G B 

max(x, y),l + a(max(x, y)))    if x, y G H, x ^ y, min(x, y) £ B 



Note that for all x,y € H, if x < y then |y| > #(|z|). So for each h = 0{f{n)) and for each 

machine My^) in our enumeration such that My^) has runtime bounded by h, for all but a finite 

number of MIJU, M/JK, MIJ^), • • • we diagonalize successfully (and thus implicitly diagonalize 

against M^j). Note that £ is computable in time polynomial in max(\x\, \y\), and that £(x,y) is 

also a P-sr function for B. I 

Note that the B of the proof of Theorem 3.2 was a tally set. Thus, in the statement of Theorem 3.2 

one can make the stronger claim P-sr n TALLY £ DTIME[0(/(n))]. 

Theorem 3.2 gives one type of P-sr set that can be kept out of P. Another example, somewhat 
analogous to the role left cuts play for the P-selective sets, would be "widely spaced and easy" 

left cuts. By this we mean sets containing only elements at appropriately widely spaced lengths 

(as in the proof of Theorem 3.2), and with the set at each of these lengths being the left cut (at 

that length) of a real number (the same at each length), and with the complexity of the number 

being such that at each nonempty length, one can brute-force compute the cut point at the previous 

nonempty length. 

If P-sr C P-rankable then P-sr C P, as all P-rankable sets are in P. But this would contradict 

Theorem 3.2. So, since P-rankable C P-sr as already observed, we have the following corollary. 

Corollary 3.3 P-rankable / P-sr. 

Similarly, the inclusion P-sr C weakly-P-rankable is also strict. 

Theorem 3.4 P-sr / weakly-P-rankable. 

Proof: Note that P-sr C weakly-P-rankable, since we can construct a weakly-P-rankable function 

from a P-sr function / for a given set by returning the rank output by f(x, x). We will show that 

there exists a set B such that B 6 weakly-P-rankable, but B $ P-sr. Consider any set B such that 

(Vn > 1)[||5="|| = 1]. Then B £ weakly-P-rankable via the function, (Vx)[h(x) = \x\], since if 

x G B, then rankß{x) = \x\. 

Let {/>},-ejv>i be a standard enumeration of all polynomial-time 2-ary functions. We will now 

construct, in stages, a particular set B — (J,->0 -^i, satisfying the above property: 

STAGE 0:    B0 = 0. 

STAGE i, i 6 N*1: Suppose /i(02,'-1,02'') = (w,n). If tu = O2'"1, then let B{ = £,-_i U 

{12,-1,02*}, making the output of f, wrong, since w & B{. If w = 02', then let 5, = 5,-_i U 
{02'-1, l2'}, making the output of/,- wrong, since w 0 £?,-. Otherwise, i.e., if w ^ 02,_1 and w ^ 02', 

let Bi = Bi-x U {02,-1,02'}; the output of/,- is clearly wrong in this case. 

Since at each stage i, i > 0, we add to B exactly one string at length 2f - 1 and 2i, B has the 

desired one-per-length property, and clearly B £" P-sr, as each potential P-sr function fails at some 

stage. | 

6 



4    Closure Properties 

Theorem 3.1 shows that the P-sr sets and the P-selective sets are different classes. Yet, one 

may wonder whether they differ on natural properties. In fact, they differ sharply regarding closure 

properties. Though Hemaspaandra and Jiang [HJ] have noted that the P-selective sets are not 

closed under union (equivalently, due to closure under complementation, intersection) or join, the P- 

selective sets clearly are closed under complementation, and under union (equivalently, intersection) 

with P sets. In contrast, P-sr is not closed under union with P sets, under join with P sets, or under 

complementation. 

Theorem 4.1 P-sr is not closed under union with P sets, under join with P sets, or under 

complementation. 

Proof: Let B and H be the sets B and H from the proof of Theorem 3.2 for the case where the / 

of that theorem is some time-constructible function that majorizes all polynomials, e.g., f(n) = 2". 

Recall that B 6 P-sr and that if € P. Recall that sA =def {sx\x € A}, and that the join operation 
is defined as F © G =def OF U IG. Suppose B © H is in P-sr. Let k{-) denote some polynomial-time 
semi-ranking function for B © H. Then to determine in polynomial time whether an arbitrary string 

x is in B, we can do the following. If x <£ H then x $ B. HxEH, run k(0x, 10'*'). If the output 

is Ox along with a rank, then x € B. If the output is 10|a?l along with a rank, then due to the 

construction of B it is easy to determine via brute force exactly how many strings are in B © H up 

to 10'x' excluding Ox. Thus, x is in B exactly if this number is one less than the rank A; returned. 

It is not too hard to see (considering the strong relationship between the properties of B and the 

properties of OB) that the above also establishes that P-sr is not closed under union with P sets. 

Similarly, if the complement of B were in P-sr, B clearly is in P, via using the semi-ranker for B on 

the two strings lexicographically following any given element of H in whose membership in B one 

is interested. ■ 
It is somewhat surprising that deciding the closure of P-sr under intersection with P sets is a 

much more difficult problem. 

Theorem 4.2 P-sr is closed under intersection with P sets if and only if P = P#p. 

Proof: If P ^ P#p, then by Proposition 2.5, there is a set B in P which is not polynomial-time 

semi-rankable. Then E* is in P-sr but E* fl Sis not. 

Suppose now that P = P#p. So P = NP = coNP. Let A be a set in P-sr via the function 

/ and B a set in P. Clearly, A l~l B is P-selective. By Proposition 2.4, we have only to show 

that A n B can be weakly ranked in polynomial time. Let r(x) be denned by f{x,x) = {x,r(x)) 

and s(x,y) be denned by f(x,y) = {s(x,y),n) for some natural n (i.e., we have taken the ranking 

and the selector functions of A separately). Let C = {(x,y) G E* x E* | y G B and y < x and 

r(y) < r(x) and (Vz < x) [r{z) = r{y) => s(z,y) = «/]}. Observe that C is a coNP set and thus, 

by our assumption, is in P. Let g(x) = \\{y | (x,y) € C}\\. Clearly, g is computable by a #P 

computation with access to C and so, again by our assumption, g is computable in polynomial time, 



as if P = P#p then FP = FP#P. Now, observe that if x G A C\ B then g(x) = rankA n B{x). This 

holds as if x G A f~l B then {y \ (x, y) G C} = {y \ y < x and y G ^4 D 5}. I 

Theorem 4.1 and Theorem 4.2 show that P-sr lacks even certain very minimal closure properties. 

Do other already-defined classes also lack such minimal closure properties, or is P-sr unique in this 

regard? In this regard, we make the following two observations. The first one contrasts interestingly 

with Theorem 4.2 in light of the fact that P-sr = P-selective D weakly-P-rankable. 

Observation 4.3 The class weakly-P-rankable is not closed under intersection with P sets. 

Proof:    Build A in stages. 

STAGE i, i G iV-1: Let m,_i = ||4,-_i D (E* - 0*)|| and let /,- be the z'th polynomial-time 

transducer. If /,(110') ^ m,_i +1, then add 000'' and 110'' to A. If /,-(110') = m,_i + 1, then add 

010'' and 110'' to A. Then A is weakly rankable, but A n (E* - 0*) is not. | 

We claim that NNT, the class of sets having polynomial-time "implicit membership tests," 

also lacks such minimal closure properties under reasonable complexity-theoretic assumptions. 

NNT [HH91] is the class of all sets A such that A has a polynomial-time computable function 

/ that on each input x states (correctly) either that x G A, or that x £ A, or that exactly one of x 

and the lexicographical predecessor of x is in A, or that not exactly one of x and the lexicographical 

predecessor of x is in A. 

Observation 4.4 P = NP = PH = P#p if and only if NNT is closed under intersection 

(equivalently, union) with P sets if and only if NNT is closed under join with P sets. 

Proof: First, since NNT is in P#p, the fact that P = P#p implies the other two conditions is 

immediate. If NNT is closed under intersection with P sets—indeed, under intersection with the 

very simple set (0 + 1)*0—then clearly P = NNT. By combining two results of [HH91] (namely, 

the characterization of ©OptP—which is now known (see the discussion in [H094]) to be equivalent 

to the serializability class [CF91,Ogi94a] SF2—in terms of NNT, and the observation regarding the 

consequences of NNT = ©OptP) it follows that P = PPPH. The same argument holds for closure 

under disjoint union with P sets—indeed with the trivial set 0. | 

Although the classes P-sr and P-selective differ with respect to some simple operations, their 

lowness properties are similar. Ko and Scheming [KS85] proved that all sets in P-selective n NP are 

in the L2 level of the low hierarchy, and Amir, Beigel, and Gasarch [ABG90] proved that all sets in 

P-selective are in the EL2 level of the extended low hierarchy. Allender and Hemaspaandra [AH92] 

have built oracles relative to which P-selective (~l NP is not in L2 and P-selective is not in EL2. In the 
absence of oracles, such a result is currently beyond reach, because it was shown by E. Hemaspaandra, 

Naik, Ogihara, and Selman [HNOSa] that if P = PP, then every P-selective set is <£ equivalent, 

to a tally set and thus is in EL2 [BB86]. We show that P-sr has the same properties as P-selective 

with respect to the extended low hierarchy: clearly, P-sr is in EL2 and P-sr D NP is in L2 (because 

polynomial-time semi-rankable sets are P-selective) and as we show below there is an oracle relative 

to which P-sr is not in EL2. The problem of finding a similar relativized lower bound on the location 

of P-sr in the low hierarchy is open. 



Theorem 4.5 There is an oracle A relative to which P-sr is not in EL2. 

Proof: Let {Nt }ieN>i be an enumeration of all polynomial-time oracle nondeterministic machines 

such that for any oracle A, for all i, and for all n the machine Nt
A runs for at most n* + i steps on 

all inputs of length n. Then for each oracle A, the set K{A) = {(i,x, ll*l'+'} | N,A accepts x} is 

NP"4-complete. We build an oracle A such that the following two statements are fulfilled: 

(1) L{A) = {x | (Vy) [|y| = \x\ and Oxy G A]} is P^-sr, 

(2) 5(A) = {0n | (3a: € £") [ * € L]} is not in P*W. 

Since 5 G NPL(A) C pNP1('t)ffi'1 and B <£ PKW = pHA)9K(A)QA (the last equality follows from 

L(A) G P^M and A G PK(j4)), we have that L(A) is not in EL2   . 

Statement (1) will be met in the following way. Let p(i') be the sequence defined by p(0) = 1 

and fi(i + 1) = 2"W for i > 0, and let J = {(i(i) \ i > 0}. The oracle A is constructed in such a 

way as to guarantee that: (i) if x G L{A) then |x| € J, (ii) for each p{i) G J, there is at most one 

string of length ft(i) in L(A), and (iii) if x G i(A) then for all strings y with \y\ - \x\ and y £ x, 
l(x, y) G A and l(y, x) g A . Since, clearly, L(A) belongs to DTIMEA[2n], standard arguments show 
that L(A) is P^-sr. A is constructed in stages. At each moment in the construction, we consider 

only those extensions of the oracle built so far that preserve the above conditions (i), (ii), and (iii) 

for the initial segment of L that has been (implicitely) built up to that moment. Such extensions 

are called legal extensions. We denote by nj the length up to which the membership of strings in A 

has been established by the end of stage j. Let {PJ}J^N^ be an enumeration of all polynomial-time 
oracle deterministic machines such that for all oracles O, for all j, and for all n, the machine Nf 

runs for at most nJ + j steps on all inputs of length n. 

STAGE 0:    A = 0, n0 = 0. 
STAGE j, j G N-1: Choose n G J sufficiently large so that n > nj-i and (n3 + j)2 < 2n. 

Reserve all strings having length between rij-i +1 and n -1 for A, the complement of A. Note that 

this is a legal extension. 
Next, P?(A) is simulated on input 0". Let u>i be the first query to the oracle set. If w\ is not of 

the form (i, x, l|xl'+i), then answer NO and continue the simulation. Suppose that wi = (i, x, llxr+*) 

for some x and i. Observe that |ai|' + i < nj + j. If there is a legal extension S of A such that Nf 

accepts x, then choose one accepting path of Nt on x with oracle S and let Q be the set of strings 

queried along this path. Reserve all strings in Q n S for A , and reserve for A all strings in Q D 5. 

At most \x\* + i < n> + j strings are reserved in this way for either A or A. Now, w\ G K(A) and 

the simulation can be continued with the YES answer. If there is no such legal extension S of A do 

not reserve any strings for A or A, answer NO to the query and continue the simulation. Note that 
whatever legal extension of A will be taken in the future, the answer NO remains correct. Proceed 

in the same way with all queries in the simulation. Since there are at most nJ + j queries and each 

query reserves at most nJ + j strings for A or A, the whole simulation reserves at this stage less than 

(„j + j)2 < 2" strings for A or A. Note that if for some pair x,y with \x\ = \y\, Oxy is reserved for 

A, or l(z, y) is reserved for A and x ^ y, or l(y, x) is reserved for A and a; # y, then x is forced to 



belong to L(A). A string x of length n could be forced to belong to L{A) only if Oxy is reserved for 

A for all y of length n and this is not possible because at most (rij + j)2 < 2" strings are reserved 

for A. Consequently, no string x is forced to belong to L(A) and at most (nJ + j)2 strings may be 

forced to belong to L(A). There are two cases to analyze next. 

Case 1. The simulation of P- * ' accepts 0". Since no string x is forced to belong to L(A), there 

is a legal extension of A such that L(A) contains no string of length n. Take such an extension that 

reserves to A or A all strings of length less than or equal to (n-7 + j)2, let nj = (nJ + j)2, and go to 

the next stage. Since O" £ B(A), it is guaranteed that B(A) / L(Pf(A)). 

Case 2. The simulation of P- * ' rejects 0". Since less than 2n strings of length n are forced 

to belong to L(A) by the simulation, there exists an x of length n that is not forced to be in L(A). 

Extend A legally so that x G L(A) and the membership in A of all strings of length less than or 

equal to (nJ + j)2 is decided by this extension, take rij — (n3 + j)2, and go to the next stage. Now, 

0" e B(A) and, thus, again, B(A) ^ L(Pf{A)). 

Clearly, this construction satisfies statement (2). I 
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